

Цель занятия: Ознакомление студентов с ролью полиморфных вариантов генов, кодирующих ферменты I фазы биотрансформации лекарственных средств, в фармакологическом ответе.

Основные вопросы:

- 1. Роль полиморфных вариантов генов, кодирующих ферменты I фазы биотрансформации лекарственных средств, в фармакологическом ответе
- 2. Ферменты I фазы биотрансформации лекарственных средств.
- 3. Семейство цитохромов Р450.
- 4. Ингибиторы и индукторы цитохрома Р450.
- 5. Роль полиморфных вариантов генов, кодирующих ферменты I фазы биотрансформации лекарственных средств, в фармакологическом ответе.

Роль полиморфных вариантов генов, кодирующих ферменты фазы биотрансформации лекарственных средств, в фармакологическом ответе

Семейство цитохромов Р450. Цитохром Р-450, в литературе часто обозначаемый СҮР, представляет группу ферментов, осуществляющих не только метаболизм ЛС и других ксенобиотиков, но и участвующих в синтезе глюкокортикоидных гормонов, желчных кислот, простаноидов (тромбоксана А2, простациклина I2), холестерина.

Филогенетические исследования показали, что цитохромы Р-450 появились в живых организмах около 3,5 млрд лет назад.

Семейство цитохромов Р450. Цитохром Р-450 является гемопротеином (содержит гем). Название цитохрома Р-450 связано с особыми свойствами этого гемопротеина. В восстановленной форме цитохром Р-450 связывает монооксид углерода с образованием комплекса с максимальным поглощением света при длине волны 450 нм.

Это свойство объясняют тем, что в геме цитохрома Р-450 железо связано не только с атомами азота четырех лигандов (при этом образуя порфириновое кольцо).

Существуют также пятый и шестой лиганды (сверху и снизу кольца гема) – атом азота гистидина и атом серы цистеина, входящие в состав полипептидной цепи белковой части цитохрома P-450.

Наибольшее количество цитохрома P-450 располагается в гепатоцитах. Однако цитохром P-450 обнаруживают и в других органах: в кишечнике, почках, легких, надпочечниках, головном мозге, коже, плаценте и миокарде.

Важнейшее свойство цитохрома P-450 – способность метаболизировать практически все известные химические соединения. Наиболее важная реакция – гидроксилирование.

Как уже указывалось, цитохромы P-450 еще называют монооксигеназами, так как они включают один атом кислорода в субстрат, окисляя его, а один – в воду, в отличие от диоксигеназ, которые включают оба атома кислорода в субстрат.

Цитохром Р-450 имеет множество изоформ – изоферментов.

В настоящее время выделено более 1000 изоферментов цитохрома P-450. Изоферменты цитохрома P-450, по классификации Nebert (1987), принято разделять по близости (гомологии) нуклеотид/аминокислотной последовательности на семейства.

В свою очередь, семейства подразделяют на подсемейства.

Для фармакогенетики особенно важны шесть генов (СҮР1А1, СҮР1А2, СҮР2С9, СҮР2С19, СҮР2D6 и СҮР3А4), поскольку кодируемые ими шесть ферментов отвечают за I фазу метаболизма у более 90% всех обычно используемых лекарственных средств.

Только СҮРЗА4 включен в метаболизм свыше 40% всех лекарств, используемых в клинической медицине. Кроме того, многие гены СҮР очень полиморфны, с аллелями, имеющими функциональные последствия для реакции на лекарственную терапию.

Аллели СҮР могут приводить к отсутствию, уменьшению или повышению активности фермента, влияя на скорость метаболизма многих лекарственных средств.

Например, CYP2D6 — первичный цитохром в I фазе метаболизма активен более чем для 70 разных лекарств.

Описаны 26 аллелей в гене CYP2D6, влияющие на его активность, понижая, устраняя или повышая ее.

Миссенс-мутации уменьшают активность этих цитохромов; аллели, при которых активность отсутствует полностью, вызваны мутациями сайта сплайсинга или сдвига рамки считывания.

В отличие от них, аллель CYP2D6*1XN представляет серию копий числового полиморфизма аллелей, когда ген CYP2D присутствует в трех, четырех и более копий в одной хромосоме.

Миссенс-мутации

Как и следовало ожидать, копии приводят к высокой активности фермента.

Существует больше десятка аллелей, не влияющих на функцию белка и считающихся диким типом.

Различные комбинации четырех классов аллелей приводят к количественным различиям метаболической активности, хотя некоторые комбинации встречаются очень редко и недостаточно изучены.

Миссенс-мутации

Обычно выделяют три основных фенотипа: с нормальным, сниженным и быстрым метаболизмом.

Индивидуумы со сниженным метаболизмом имеют явный риск накопления токсичного уровня лекарств.

При быстром метаболизме есть риск недостаточного эффекта при использовании обычных доз, неадекватных для поддержания терапевтического уровня препарата в крови.

Изменения ферментов цитохромов Р450 важны не только для детоксикации лекарственных средств, они также участвуют в активации некоторых препаратов.

Частота многих аллелей цитохромов Р450 различается в разных популяциях.

Например, фенотип с медленным метаболизмом CYP2D6 присутствует у 1 из 14 европеоидов, редко встречается у монголоидов и практически отсутствует у американских индейцев.

Аналогичным образом аллели с медленным метаболизмом гена CYP2C19 имеют выраженную этническую изменчивость, составляя 3% у европеоидов и почти 16% у всех монголоидов, имеющих медленный метаболизм.

Дигидропиримидин дегидрогеназа (ДПДГ).

Позже было показано, что низкая активность ДПДГ наследуется по аутосомно-рецессивному типу.

У пациентов с низкой активностью ДПДГ отмечается удлиненный период полувыведения фторурацила (до 160 мин, при нормальном периоде полувыведения 8-22 мин).

Есть четкая закономерность: чем ниже активность ДПДГ, тем тяжелее побочные эффекты (нейротоксичность, кардиотоксичность) фторурацила.

Дигидропиримидин дегидрогеназа (ДПДГ).

Генетические исследования позволили выявить ряд мутаций гена *DPYD*, который кодирует данный белок, ответственных за сниженную активность этого фермента, а следовательно, и за повышенную чувствительность к фторурацилу.

Наиболее распространенными мутациями оказались делеция в 165-м положении, замена гуанина на аденин в 14-м положении и сочетание этих двух мутаций.

Дигидропиримидин дегидрогеназа (ДПДГ).

На сегодняшний день распространенность гомозигот по мутантным аллелям гена ДПДГ известна только среди японцев и составляет 1 на 10 000.

Однако следует отметить, что повышенная чувствительность к фторурацилу, отмечается не только у гомозигот, но и у гетерозигот по мутантным аллелям гена ДПДГ.

ДПДГ можно считать ферментом, обладающим генетическим полиморфизмом. Современные представления о генетическом полиморфизме ДПДГ позволяют рекомендовать внедрение генотипирования по гену DPYD в генетическую практику.

Параоксоназа.

Параоксоназа – фермент из группы арилэстераз.

Свое название фермент приобрел из-за способности метаболизировать параоксон, антихолинэстеразный препарат, применяемый местно при глаукоме.

Кроме параоксона, параоксоназа инактивирует путем эфирного гидролиза такие ксенобиотики, как фосфорорганические соединения, органофосфаты, карбаматы, эфиры уксусной кислоты.

Параоксоназа.

Носители мутации p.Gln192Arg, особенно гомозиготы, более чувствительны в отношении фосфорорганических соединений.

Распространенность гомозигот по этой мутации среди испанского населения составляет 16%, среди североевропейского населения – 9%. Наибольшая распространенность этой мутации зафиксирована в Японии и составляет 41,4%. Именно это обстоятельство явилось причиной больших жертв при применении зарина во время террористического акта в Токийском метро в 1995 г.

Бутирилхолинэстераза.

Физиологическая функция бутирилхолинэстеразы – гидролиз ацетилхолина.

Кроме того, бутирилхолинэстераза катализирует реакцию гидролиза деполяризующего миорелаксанта суксаметония. Суксаметония йодид широко применяется в анестезиологии.

С начала 50-х годов появились сообщения о повышенной чувствительности к суксаметонию, которая обусловлена сниженной активностью бутирилхолинэстеразы.

Бутирилхолинэстераза.

Бутирилхолинэстеразу со сниженной активностью в литературе часто называют атипичной псевдохолинэстеразой.

Еще в 50-е годы XX в. были описаны случаи продолжительной остановки дыхания (апноэ) при применении суксаметония: вместо 2-3 мин апноэ у лиц с парадоксальной реакцией продолжалось два часа и более.

S-метилтрансфераза.

Тиопурин S-метилтрансфераза (ТРМТ) – фермент, который катализирует реакцию S-метилирования производных тиопурина.

Это основной путь метаболизма цитостатиков из группы антагонистов пурина: меркаптопурина, тиогуанина, азатиоприна.

S-метилтрансфераза.

Чем меньше активность TPMT, тем больше концентрации 6TGN в плазме крови и тем более выражены побочные эффекты меркаптопурина.

Низкая активность TPMT наследуется по аутосомнорецессивному типу, при этом гомозиготы проявляют низкую активность TPMT, а гетерозиготы – промежуточную.

Алкогольдегидрогеназа.

Фермент экспрессируется в печени в двух формах: ALDH-1 (цитозольная) и ALDH-2 (митохондриальная).

С генетической точки зрения лучше изучен ген ALDH-2, мутации в котором ведут к алкогольной интоксикации. Фермент ALDH-2 вовлечен в патогенез различных злокачественных новообразований, связанных со злоупотреблением алкоголем.

Распространенность мутантных форм ALDH-2 очень высокая среди населения монголоидной расы (до 50%). Молекулярно-генетическая диагностика гетеро- и гомозигот по патологическим мутациям возможна.

Вопросы для контроля изучаемого материала:

- 1. Роль полиморфных вариантов генов, кодирующих ферменты I фазы биотрансформации лекарственных средств, в фармакологическом ответе
- 2. Ферменты I фазы биотрансформации лекарственных средств.
- 3. Семейство цитохромов Р450.
- 4. Ингибиторы и индукторы цитохрома Р450.
- 5. Роль полиморфных вариантов генов, кодирующих ферменты I фазы биотрансформации лекарственных средств, в фармакологическом ответе.

Рекомендуемый список литературных источников

- 1. Мустафин Р.Н., Гилязова И.Р., Тимашева Я.Р., Хуснутдинова Э.К. Основы фармакогенетики: учеб. пособие: /Уфа: ФГБОУ ВО БГМУ Минздрава России, 2020. 116 с.
- 2. Бочков, Н.П. Клиническая генетика: учебник / Н.П. Бочков, В.П. Пузырев, С.А. Смирнихина; под ред. Н.П. Бочкова. 4-е изд., доп. и перераб. Москва: ГЭОТАР-Медиа, 2018. 592 с.
- 3. Прокофьева, Д.С. Фармакогенетика: учебное пособие / Д.С. Прокофьева, А.Х. Нургалиева, Д.Д. Надыршина, Э.К. Хуснутдинова. Уфа: РИЦ БашГУ, 2017. 100 с.
- 4. Allocati, N. Glutathione transferases: substrates, inihibitors and pro-drugs in cancer and neurodegenerative diseases / N. Allocati, M. Masulli, C. Di Ilio, L. Federici // Oncogenesis. 2018. Vol. 7(1). P. 8–8. doi:10.1038/s41389-017-0025-3
- 5. Боброва, О.П. Значение полиморфизма гена MDR1 для индивидуализации анальгетической терапии в онкологии / О.П. Боброва, Н. Шнайдер, Д. Сычёв, М. Петрова Фармакогенетика и фармакогеномика. 2017.- № 1. С. 25–29.